
Behavior Circuits, a Framework to combine Human
and Machine Commands

Jan Baumgärtner
Institute for Computer Engineering

Heidelberg University
Heidelberg, Germany

jan.baumgaertner@ziti.uni-heidelberg.de

Holger Dieterich
Institute for Computer Engineering

Heidelberg University
Heidelberg, Germany

holger.dieterich@ziti.uni-heidelberg.de

Jens Wagner
Institute for Computer Engineering

Heidelberg University
Heidelberg, Germany

jens wagner@online.de

Simon Otto
Institute for Computer Engineering

Heidelberg University
Heidelberg, Germany
simonberthold@web.de

Essameddin Badreddin
Institute for Computer Engineering

Heidelberg University
Heidelberg, Germany

badreddin@ziti.uni-heidelberg.de

Abstract—This paper presents a framework for shared control
of semi-autonomous ground vehicles on an operational level.
The so-called behavior circuits can extend and unify existing
arbitration strategies realizing a rule-based fusion of inputs. This
allows human users to build an internal model of the assistance.

We explain how to design behavior circuits for desired arbi-
tration strategies. Using one sample circuit, we demonstrate that
the use of behavior circuits for arbitration between human and
multiple assistive systems results in immediate assistive benefit.

Index Terms—mobile robotics, shared control, input mixing,
human-machine interface

I. INTRODUCTION

Machines are slowly transforming from devices we control
to devices with which we cooperate to achieve a shared goal.
To most people, this transformation is probably nowhere more
apparent than in the automotive industry. With new advanced
systems such as BMW’s driving assistant [1], humans are no
longer the sole drivers of their cars. The issue now arises
that given different steering commands between a human
and an assistive system, it is unclear whom the car should
follow. In some situations, the assistive system might prevent
an accident, while in others it might misjudge the situation
whereas the human reacts correctly.

Such a scenario in which multiple agents want to control
the behavior of a system is often referred to as shared
control. Since the term is regularly used without a concise
definition, we refer to the definition of Abbink et al. [13].
According to Abbink et al., shared control can take place on
different levels. This paper proposes a new framework for
the fusion of uncoupled command inputs on an operational
level using input-mixing [13]. In broad terms, this means that
the framework directly combines multiple continuous steering
commands into a single command, which then controls the
system.

Various input-mixing approaches have been proposed in the
literature:

In deliberative shared control, human input can override an
assistive device that is otherwise fully autonomous [4] [10].
By contrast, in safeguarded navigation, the user provides the
default behavior while the machine intervenes in specified
cases like imminent collisions [3] [4].

Such discrete switches between human operator and assis-
tive system can lead to jerky behavior if both want to steer
in different directions [7]. In the case of driving, such jerks
are not only unpleasant for the operator; he will also try to
compensate for them, resulting in even worse performance [7].

To overcome this problem, other approaches smoothly blend
the steering commands of both the human and the assistive
system. From now on, we will refer to these steering com-
mands as behaviors.

In behavior-based shared control, this blending is usually
performed using self-defined functions [8] [9]. Since the
functions are arbitrary their design is nontrivial. Furthermore,
not every function has an intuitive interpretation which might
make it difficult for the user to anticipate the blended behavior
[13].

Dynamic shared control approaches make use of a weight-
ing factor η ∈ [0, 1] to blend assistant behavior va and human
behavior vh into a final behavior v [4] [11]:

v = ηva + (1− η)vh (1)

Since η can be a function, an agent’s influence on the resulting
behavior can shift dynamically. Because such a function is
arbitrary the approach also suffers from the same problem of
interpretability.

Both dynamic shared control and behavior-based ap-
proaches are conventionally used with one assistive system [4]
[11]. Using multiple assistive systems, therefore either requires
switching between them depending on the situation [9] or
extending the approaches. The first solution reintroduces the

previously encountered jerky motion that should be avoided.
The second solution increases the complexity and can make it
more difficult to form an internal model of the input mixing.
Thus making it hard to predict the blended behavior.

To recapitulate, the previously mentioned approaches either
suffer from nonsmooth behavior or make it difficult for the
human to build an internal model of the assistance. This paper
proposes behavior circuits, a rule-based fusion framework
that helps the human user to build an internal model of the
assistance.

These rules are implemented using a small set of functions
based on logic gates. These functions can be interconnected
into circuit-like structures that model desired types of input
mixing.

Such a function system was first proposed by Badreddin [2]
where they were used to fuse the behavior of multiple robot
subsystems. Our work applies these concepts to input mixing
and proposes a new rule-based design framework for circuit
design. We also expand the original function set and redesign
the functions for better performance and broader use cases.

We will show that behavior circuits can model smooth
versions of deliberative shared control and safeguarded nav-
igation. Furthermore, we will explain how behavior circuits
can be used to combine multiple input mixing approaches to
create new systems.

The rest of this paper is structured as follows: Section II mo-
tivates the usage of logic-gate-like functions before explaining
how they are used for input-mixing. These functions will be
called analogical gates and are derived in section III. Since the
basic gates on their own are not very expressive, section IV
shows how they can be connected to compound gates modeling
more complex rules. Section V shows how to design circuits
combining multiple behaviors using this extended set of gates.
Example circuits are then designed in section VI to prove that
the framework can model and extend current approaches. An
experiment was performed to show that the usage of such a
circuit results in improved driving performance. Section VII
describes the experiment setup while section VIII describes the
results. The paper closes with a discussion in section IX and
a conclusion in section X. Here the strengths and weaknesses
of the proposed system are recapitulated and further research
directions are outlined

II. HOW BEHAVIOR CIRCUITS WORK

As mentioned above, the gates implement rules that govern
the interaction between the inputs. These rules are based on
binary logic. To motivate this we will use a simplified car
control scenario. Here, how the car turns is controlled by a
human behavior and one assistive system behavior. Assuming
that one can either turn or not turn, this is a binary problem.
In this simple scenario, every input mixing function can be
expressed as some kind of logic circuit. These circuits all
implement rules governing when the system should turn. The
rule turn if the human and the assistive system want to turn
is implemented by a single AND gate. Consequently, the

rule turn if either one of the two actors wants to turn is
implemented by an OR gate.

In a real driving scenario, the choice is not between turning
or not turning, but how much to turn. That is to say that the
steering command v is defined on a range of [vmin, vmax].

The main idea of behavior circuits is to extend binary logic
gates so that the approach of the previous scenario can be
applied to continuous commands.

These analogical gates are monotonic functions that pre-
serve the rules of their binary counterparts while producing
smooth values on their defined range. They can be connected
to form behavior circuits which implement smooth extensions
of every possible binary rule. Constructing a circuit in this
context means combining the analogical gates into a composite
function. An example of this can be seen in Fig. 1.

Fig. 1. Sample Circuit fusing behaviors a, b, c and d including input mapping
and output rescaling

Analogical gates are defined on the continuous interval
[−1, 1] instead of the interval [0, 1]. The negative sign is used
to distinguish between actions like turning to the right and
turning to the left. This example also serves as an interpretation
of the value −1; it is the opposite control action to 1, while 0
means no action. In the case of turning a car, this means −1
can be interpreted as turning fully to the left, 1 as turning fully
to the right, and 0 as not turning at all. This interpretation
extends to all values between −1 and 1. −0.5 can thus be
interpreted as turning half as much to the left as −1.

Since in the previous driving example the steering command
is defined on the interval [vmin, vmax] circuit inputs first
have to be downscaled to a range of [−1, 1]. This can be
done for example by first dividing each circuit input by
max(|vmax|, |vmin|). The circuit output can then be re-scaled.

Any time no logical opposite can be defined, mapping the
input only to [0,1] is advised to preserve the interpretation of
positive and negative values.

To summarize: Behavior circuits are made up of analogical
gates. These represent simple rules that govern the interactions
of the input behaviors.

Table I, among other things, summarizes these rules for
different Gates using the example of turning. Note that instead
of turning any other control action such as driving forward
could be substituted.

TABLE I
TURN RULES FOR EACH GATE

Gate Rule Equation Symbol

AND Turn in a direction if both a and b want to turn in the direction ab
tanh((a+b)/λ)

tanh(2/λ)

OR Turn in a direction if a or b want to turn in the direction a+ b− ab
tanh((a+b)/λ)

tanh(2/λ)

AMP Turn like b amplified by how a wants to turn ab

PREVAIL Turn like b except if a wants to turn, then turn like a OR(a,OR(a, b))

MULTIMIXER Turn like a or b depending on η OR(AND(a, η), AND(b,NOT (η)))

INVOKE Turn like a or b if a wants to turn AND(a,OR(a, b))

III. ANALOGICAL GATE DERIVATION

The first investigation into analogical gates defined on
[−1, 1] was performed by Badreddin [2]. While the analogical
gates derived in this paper follow the idea of [2] that the gates
should be point symmetric, they have a different description
that adheres closer to the behavior of their binary counterparts
and is less nonlinear. The derivation of these new analogical
gates is a two-step process:

A) extend the binary AND and OR to [0,1] using t-norms
and s-norms respectively

B) extend the t-norms and s-norms to [-1,1] such that
monotony is maintained and the resulting gates are point
symmetric.

T-norms and s-norms can be understood as multivalued
extensions of binary logic [12]. Since the values between zero
and one are not uniquely defined by binary logic there are
multiple possible t-norms and s-norms. To avoid jerky motion
these norms should be smooth. Furthermore, they should
not introduce unnecessary nonlinearities. These considerations
have led to the choice of the product t-norm and s-norm [12].

Product t-norm >Prod(a, b) = ab

Product s-norm ⊥Prod(a, b) = a+ b− ab
(2)

where a and b are input values defined on [0, 1]. The simplest
way to achieve the desired extension specified in B) is to
multiply the norms with sign(a+b). However this produces a
nonsmooth gate since the sign function is not smooth at zero.
Since smoothness is a desired property of the gates, the sign
function was smoothed using the tangens hyperbolicus. This
results in the final description

AND(a, b) = ab
tanh((a+ b)/λ)

tanh(2/λ)

OR(a, b) = a+ b− ab tanh((a+ b)/λ)

tanh(2/λ)

(3)

where a and b are defined on [−1, 1] and λ is the smoothing
magnitude. The factor tanh(2/λ) is used to ensure that
AND(1, 1) = OR(1, 1) = 1. A contour plot of both functions
can be seen in Fig. 2. While a bigger λ leads to a smoother

Fig. 2. Surfaceplot of AND and OR gate with smoothing magnitude λ = 1

gate behavior, it also results in a slight deviation from the
boundary values. For example ORλ=0.5(1, 0.1) is only 0.973
instead of 1.0. In practice, a smoothing magnitude of λ = 1
seems to be a good compromise. For the rest of this paper,
we will assume that all gates use a smoothing magnitude of
λ = 1.

Since more complex circuits might require negation, a NOT
operation can also be defined:

NOT (a) = (1− |a|) tanh(a/λ)

tanh(1/λ)
(4)

Where λ is again the smoothing magnitude.
While this set of gates is already very expressive, they offer

no way to map the input pairs (−1,−1) and (1, 1) to the same
nonzero value. This means it is not possible to implement rules
which behave the same for negative and positive signs. For
this, an additional gate is required.

For this purpose we proposed the AMP or AMPLIFICA-
TION gate. Its simplest implementation is a multiplication:

AMP (a, b) = ab (5)

IV. COMPOUND GATES

Three types of basic gates mean that three basic rules can
be implemented. Moreover, these rules are all symmetrical.
That means it is not possible to model rules where one input
takes precedence over another using a single analogical gate.

Fortunately, like logic gates, analogical gates can be com-
bined into more complex circuits. These circuits can then
model more complex rules. Such a reusable circuit, which
models a rule between two inputs, will be called a compound
gate. Unfortunately, the problem of synthesizing a circuit from
a desired rule is as of yet unsolved. Until then the design of
compound gates is mainly based on intuition.

In the case of one input a taking precedence over another
input b, a compound gate can be built with two OR gates:

PREV AIL(a, b) = OR(a,OR(a, b)) (6)

The resulting circuit is called a PREVAIL gate and was first
proposed in [2]. One should note that in the binary case, this
gate would simplify into an OR gate. Unfortunately, most
binary simplification rules no longer hold for analogical gates.
Yet, it is still possible to construct any simplified binary
circuit using analogical gates. This will produce a smooth
variant of the binary counterpart. An example of this is
the analogical multiplexer, which we call MULTIMIXER. It
smoothly transitions between two signals as the controlling
input η moves between 0 and 1. This implements a version
of the dynamic shared control of [11]. In our opinion, the
slight nonlinearities introduced due to the tanh function are
not noticeable in practice. Another example of a compound
gate is the INVOKE gate which will be used later. The rules
the compound gates implement as well as their formulation
can be seen in Table I.

V. BUILDING CIRCUITS

Constructing a circuit is synonymous with specifying the
rules that should govern the interaction of all behaviors. For
one human behavior and one assistive system behavior, this is
analogous to the motivating example of section II. Meaning the
rules of Table I can be used to find a suitable gate fusing the
two behaviors. On the off-chance that no current gate captures
the desired type of assistance, a new compound gate has to be
designed.

Since these cases are very uncommon in our experience the
main difficulty in behavior circuit design is combining multiple
assistive systems with human input. In this case, not only the
choice of gates is important but also their interconnection.

This can be further complicated by systems with multiple
control axes. Meaning each input behavior is also made up
of multiple values. Fortunately in practice different controlled
axes can often be controlled by independent sub-circuits.

The problem of interconnection can also often be simplified.
Since the purpose of behavior circuits is not to combine

assistive systems with each other, but with human behavior,
circuits often have a cascaded topology. Meaning that assistive
behaviors are combined one after another with the previous
combination of human and assistive behaviors. An example
of this can be seen in Fig. 3 where two assistive systems were
combined with human input. It should be noted that sometimes
it is still helpful to first combine multiple assistive systems into
a more abstract type of assistance. For example, if the systems
themselves are black-box modules.

In most cases, however, a cascaded topology is the most
practical. This topology simplifies circuit design since one only
has to decide in which order to combine the systems and which
gates to use. This is a matter of design and depends on the
assistive systems and the desired result.

Another matter of design is the tuning of the circuit. While
it is possible to specify the rules governing the input mixing,
the final shape of the function is predetermined by the shape
of the gates used in the circuit. Sometimes one might want to
fine-tune this shape.

Suppose two behaviors are connected by a PREVAIL gate.
While the gate models the desired interaction of behavior
a taking precedence over behavior b, this might happen too
abruptly for the user.

It is generally advised to solve this by tuning the parameters
of behavior a. However, if this is for some reason not possible
the behavior circuit can be used in conjunction with self-
designed nonlinear mapping functions f(a). These provide a
custom mapping from [−vmax, vmax] to [−1, 1] (see Fig. 1)
and can be used to compensate for undesirable input behavior.
While the choice of function is arbitrary it is advisable to
divide it into a nonlinear function f̃(a) [−1, 1]→ [−1, 1] and
a linear mapping m(a) [−vmax, vmax]→ [−1, 1], where

f(a) = f̃(m(a)) (7)

Such a division makes the shape of the nonlinearity indepen-
dent of the input range which increases reusability.

VI. EXAMPLE CIRCUITS

Section IV showed that a MULTIMIXER implements equa-
tion (1). This section will expand on this and show sample
circuits for different types of input mixing. All circuits will
be built to control the angular velocity ω and linear velocity
v of a mobile robot.

Following the advice of section V, each circuit can be
divided into two independent sub-circuits, one for each control
axis. The circuit for dynamic shared control can be seen in Fig.
5 and uses two MULTIMIXERs.

A sample circuit that models a type of smooth deliberative
shared control between a human and an assistive device can
be seen in Fig. 4. Instead of using a button to switch control
between the user and the assistive system, the control smoothly
shifts to the human as his command deviates from a default
value.

This default value was defined to be v = 1, ω = 0.
Because of this, a PREVAIL gate is used to allow the human
operator‘s angular velocity to overwrite the angular velocity

of the assistive system. Assuming that the robot can not drive
backward an AND gate can be used to overwrite the linear
velocity with a smaller value. While this system needs no
extra button, its disadvantage is being unable to overwrite the
assistance system with the default values. From a practical
standpoint, such a setup only makes sense when the assistive
device is designed in tandem to work around this problem.

For a classical switch, a binary button can be used to control
the control input η of the circuit in Fig. 5. This transition could
also be smoothed with ramp functions to minimize jerking.

One of the advantages of the behavior circuit approach is
its ability to use more than one assistive system and combine
existing methods. This is showcased by the circuit in Fig. 3
which is once again divided into two independent sub-circuits.
Here a safeguarded navigation is combined with a behavior-
based shared control approach. This requires two assistive
systems.

The first is an emergency collision avoidance system that
turns and breaks if the system would otherwise collide with
an obstacle.

The second assistive system, the steering assistance, tries to
help the human steer to a specified target position by planning
and following a path from its current position to the target.

The sub-circuit for linear velocity implements the rule drive
like the human OR the steering assistance if the human AND
the collision avoidance system want to drive.

The sub-circuit for angular velocity implements the rule turn
like the human OR the steering assistance EXCEPT IF the
collision avoidance wants to turn, then turn like the collision
avoidance.

These rules ensure that the system will not collide with
an obstacle no matter what happens, while still allowing the
steering assistance to support the human operator.

The collision avoidance takes on the role of a virtual sensor,
which in a safeguarded navigation system decides when to
break [3]. In contrast to classical safeguarded navigation, it
can not only decide if it should break but also by how much.
This works best if the collision avoidance is tuned or designed
in tandem with the circuit, see section V.

In the absence of collision avoidance, the operator input
is combined with the steering assistance using a self-defined
function. This makes this circuit a type of behavior-based
shared control. All behavior circuits can be seen as a type of
behavior-based shared control which uses a function system to
design custom functions. Instead of switching between active
behaviors the circuit itself decides when each behavior should
influence the output.

VII. EXPERIMENTAL VALIDATION

A series of experiments were designed with two goals in
mind. First to show that behavior circuits provide an assistive
benefit. And secondly to show that they are expressive: Mean-
ing that the contribution of each input behavior dynamically
changes depending on the situation.

For this purpose, a scenario was set up in which a human
teleoperated a mobile robot. The operator was in this case

Fig. 3. Custom Circuit for example scenario

Fig. 4. Sample circuit for deliberative shared control of angular velocity ω
and linear velocity v

tasked with navigating from a start point to a specified target.
To benefit from assistance three types of impediments were
added to the output of the operator’s joystick which prevents
him from accurately controlling the robot:

• jittery operator motion simulated by additive Gaussian
random noise ξ

• low control precision of the operator simulated by a
quantization of the operator’s input

• slow reaction time simulated by a randomized time delay
τ until the robot considers the next operator command.

vimpeded(t+ τ) = quantize(vnormal(t)) + ξ

ξ ∼ N (0, 0.01) τ ∼ N (0, 2)2

ωimpeded(t+ τ) = quantize(ωnormal(t)) + ξ

ξ ∼ N (0, 0.3) τ ∼ N (0, 2)2

(8)

In this scenario, the linear velocity was quantized into three
steps while the angular velocity was quantized into five steps.
It should be noted that these impediments are severe and may
not be representative of typical operator impediments.

Two baseline experiments were conducted to compare
against the performance of circuit-based assistance. First, the
operator was tasked to drive to the specified target using
a normal unimpeded joystick. These experiments were then

Fig. 5. Sample circuit for arbitration of angular velocity ω and linear velocity
v

repeated with the impeded joystick. In the third scenario, the
operator was aided by the circuit of Fig. 3.

All experiments took place in an arena set up in our lab with
different regions modeling different complications. A turtlebot
burger was used as a robot. An overview of the arena can be
seen in Fig. 7 while the robot is pictured inside the arena
in Fig. ??. The first region is a wide-open area with a small

Fig. 6. Turtlebot Robot at the Entrance of Region 2

opening leading to the next region. While a steering assistant
can help produce a smoother trajectory, a collision-avoidance
system is not needed. The second region is a narrow corridor
where it is easy for an impeded driver to collide with a wall.
The third region features a huge spool at its center. Since the
robot’s laser scanners only pick up the much smaller inner
diameter of the spool, the spool models an obstacle that is
only seen by the human.

The experiments were conducted with five participants with
no prior exposure to driving assistance using behavior circuits.
Before using the assistive systems, they were first shown the
behavior of each assistive system, the fusion circuit seen in
Fig. 3 and rules implemented by each gate as seen in Table I.

VIII. RESULTS

The trajectories created by driving with a normal joystick
impeded joystick and assisted joystick respectively were plot-
ted in Fig. 8. Note that since the turtlebots odometry was used
to update its position the measurement gets less accurate as

Fig. 7. Arena for Experiments

time goes by. However the resulting Fig. is only meant to
showcase the qualitative differences between normal joystick
driving, impeded joystick driving and assisted driving. Each
trajectory was plotted until the robot either reaches the target
or collides with an obstacle.

Comparing the impeded joystick trajectory with the assistive
trajectory, one can already see significant improvements. For
example, all but two impeded joystick operators collided with
an obstacle while no assisted operator did. Note that the two
remaining impeded operators did in fact reach the target.
Their uneven movement caused the odometry to be much
worse, distorting their true position and causing participant
5 to appear as if he temporarily left the arena.

The assistive trajectories are also much smoother though
they also show strange behavior on the first two meters. This
is, in all likelihood, due to the operator getting accustomed to
the assistance provided by the circuit. This would indicate that
the operators are quickly able to grasp how the system will
assist them and use this knowledge to their advantage resulting
in improved performance from then on out. However, since the
experiment had no control group and only a small sample size
this is currently only conjecture.

For a more quantitative analysis and comparison of the
experiments, three metrics were chosen. These were the
smoothness of the trajectory, the fluency of the trajectory, and
the time the participants needed to reach the target (time to
target). Fluency Γ(x) and smoothness Θ(φ) were defined by:

Θ(φ) = exp

(
−R

(
∂φ

∂t
(t)

))
Γ(x) = exp

(
−R

(
∂||x(t)||
∂t

)) (9)

Where φ is the orientation of the robot x its position and R(L)
is the one-step autocorrelation of the signal L.

Smoothness primarily describes how smooth the robot
changes its orientation, while fluency describes how smooth it
covers distance. The measures have been adopted from [11]
with the original mean replaced by the autocorrelation as the
mean is unsuited for situations where the system has to stop
at some point.

Fig. 8. Robot Trajectories with different Joystick Configurations

The results of these measures for each participant can be
found in Table II. As expected, the participants performed
worst with the impeded joystick in all but one case. For
participant 4 the impeded joystick was smoother than the
assisted joystick. This can probably be explained by the initial
control problems the participant experienced at the start as
seen in Fig 8. In all other cases, the performance of the
participants improved when using the assisted system, in
some cases even surpassing the performance with the normal
joystick.

While this indicates that behavior circuit-based assistance
improves driving performance, the question remains: Is this
due to the assistive system forcing the robot into the desired
behavior, or the assistance dynamically interplaying with the
human command.

To illustrate that the influence of the input behaviors dynam-
ically shifts, Fig. 9 shows the behavior of all assistant systems
for participant 5. The plot is divided into two subplots one for
each control axis.

Looking at the subplot of the angular velocity ω the influ-
ence of the OR gate can be seen from t = 0s to t = 20s.
Similar to a bounded sum, the turning commands are added
on top of each other, the faster-reacting assistant is in this case
able to finetune the slower reacting time-delayed command of
the impeded joystick.

Between time t = 20s and t = 30s the collision avoidance
becomes active. The positive input of the combined steering
assistance and impeded joystick is discarded and the output
assumes the negative values of the collision avoidance instead.
This is the intended behavior of the PREVAIL gate. Note that
the amplitude of the output is greater than the amplitude of
the collision avoidance. This is a side effect of the PREVAIL
gate which introduces nonlinearity.

Between t = 20s and t = 30s the collision avoidance not
only wants to turn but also brake. This can be seen in the sub-
plot of the linear velocity v. Here the AND gate causes the
output to decrease as the collision avoidance input decreases.

The effects of the INVOKE gate start to be observable after
t = 35s since before participant 5 almost always drove with

Fig. 9. comparison between circuit input and output behaviors (top: linear
velocity, bottom: angular velocity)

full linear velocity.
Now the output follows the general shape of the impeded

joystick, however, the steering assistance still fine-tunes the
behavior similar to the OR gate. The reason that the output
decreases more than the joystick command is due to the
nonlinearity of the INVOKE gate.

To conclude, the contribution of each gate can be seen as
they dynamically shift the influence of each behavior depend-
ing on the situation. This shows that behavior circuits are
capable of expressively interweaving the different behaviors
even without an external weighting factor η.

IX. DISCUSSION

The experimental evidence proves that it is possible to use
behavior circuits to improve the driving performance of an

TABLE II
ROBOT TRAJECTORY METRICS

Smoothness Θ(φ) Fluency Γ(x) Time to Target T [s]
normal impeded assisted normal impeded assisted normal impeded assisted

participant 1 0.982 0.872 0.884 0.982 0.982 0.986 54.1 88.1 62.4
participant 2 0.968 0.806 0.911 0.979 0.969 0.987 53.7 170.1 76.0
participant 3 0.985 0.892 0.981 0.979 0.974 0.978 51.6 85.4 39.1
participant 4 0.984 0.848 0.838 0.977 0.973 0.975 52.5 72.9 64.4
participant 5 0.983 0.954 0.957 0.976 0.970 0.980 47.5 52.2 48.1

impeded operator. We acknowledge that one particular exam-
ple is not enough to prove the viability of a framework. We
are currently working on a more comprehensive comparison
between behavior circuits and other approaches. In this sense,
the experiment can be seen as a showcase motivating the use
of behavior circuits for input mixing. Specifically, it showed
that behavior circuits can dynamically shift the influence of the
input behaviors even in the absence of an external weighting
factor η.

The results also indicate that the human operators could
quickly grasp how the system is assisting them at any given
time. However, the sample size of this study was quite limited,
and the participants were not representative of the general
population. A more comprehensive study should be conducted
to thoroughly investigate the learnability of behavior circuit-
based systems.

We also showed that the framework offers extensions and
generalizations of different shared control approaches as seen
in section VI. The section also demonstrated that behavior
circuits allow the unification of different approaches in a single
system.

However, there are also disadvantages. Due to their design,
gates introduce nonlinearity into the fusing process that could
be avoided with custom build functions. This is especially
apparent for the compound gates. At the same time, this
nonlinearity is only barely noticeable during driving from our
experience when testing and tuning the gates and circuits.

X. CONCLUSION

In this paper, a new input mixing framework was proposed
to fuse human input with the input of multiple assistive
systems. This framework uses extensions of binary logic,
called analogical gates, to build behavior circuits. The input
of these behavior circuits is the normalized behavior of the
human and each assistive system. The circuits then produce
a normalized output fusing the inputs. We showed that the
behavior circuits can emulate different input mixing strategies.
The experimental results also indicate that such a circuit could
improve the driving performance of an operator using an
impeded joystick. These experiments were however limited
only to one circuit and a small set of participants. More broad
studies need to be carried out to further investigate human
ability to develop an internal model for the workings of the
circuits.

We hope nevertheless that the presented framework will be
useful to develop more sophisticated shared control applica-
tions.

To further this goal we are currently working on a more
structured approach to behavior circuit design analogous to
the design of logic circuits given functional requirements.

REFERENCES

[1] ”Overview of the main driver assistance systems” February
2. 2021 Accessed on: Sep. 22, 2021. [Online]. Available:
https://www.bmw.com/en/innovation/the-main-driver-assistance-
systems.html

[2] E. Badreddin, ”Fuzzy relations for behaviour-fusion of mobile robots”,
Proceedings of the 1994 IEEE International Conference on Robotics and
Automation, 1994, pp. 3278-3283, doi: 10.1109/ROBOT.1994.351066

[3] C. Mandel, K. Huebner, and T. Vierhuff ”Towards an autonomous
wheelchair: cognitive aspects in service robotics” Proceedings of
towards autonomous robotic systems, 2005 pp. 165172

[4] C. Urdiales, J. M. Peula, M. Fdez-Carmona, C. Barru, E. J. Prez, I.
Snchez-Tato, ... and Sandoval, F. (2011). ”A new multi-criteria opti-
mization strategy for shared control in wheelchair assisted navigation”,
Autonomous Robots, 2011,pp. 179-197.

[5] A. Erdogan and B. D. Argall, ”Prediction of user preference over
shared-control paradigms for a robotic wheelchair,” 2017 International
Conference on Rehabilitation Robotics (ICORR), 2017, pp. 1106-1111,
doi: 10.1109/ICORR .2017.8009397 .

[6] A. Benloucif, A. T. Nguyen, C. Sentouh, and J. C. Popieul ”Cooper-
ative trajectory planning for haptic shared control between driver and
automation in highway driving” 2009 IEEE Transactions on Industrial
Electronics, 2019, pp. 9846-9857.

[7] Y. Horiguchi and T. Sawaragi, ”Effects of probing behaviors to adapt
machine autonomy in shared control systems,” 2005 IEEE International
Conference on Systems, Man and Cybernetics, 2005, pp. 317-323 Vol.
1, doi: 10.1109/ICSMC .2005.1571165 .

[8] RS. Rao, K. Conn, SH. Jung, et al., ”Human-robot interaction: ap-
plication to smart wheelchairs,” Proceedings 2002 IEEE International
Conference on Robotics and Automation, 2002, pp. 3583-3588 vol.4,
doi: 10.1109/ROBOT.2002.1014265 .

[9] T. Rfer, C. Mandel, A. Lankenau, B. Gersdorf, and U. Frese ”15 years
of Rolland”, Specification Transformation Navigation, 2009.

[10] M. Mazo, ”An integral system for assisted mobility [automated
wheelchair]”, IEEE Robotics & Automation Magazine, vol. 8, no. 1,
pp. 46-56, March 2001, doi: 10.1109/100.924361 .

[11] Q. Li, W. Chen and J. Wang, ”Dynamic shared control for
human-wheelchair cooperation,” 2011 IEEE International Confer-
ence on Robotics and Automation, 2011, pp. 4278-4283, doi:
10.1109/ICRA.2011.5980055 .

[12] L. A. Zadeh, G. J. Klir, and B. Yuan ”Fuzzy sets, fuzzy logic, and fuzzy
systems: selected papers” (Vol. 6). World Scientific. 1996

[13] D. A. Abbink et al., ”A Topology of Shared Control SystemsFinding
Common Ground in Diversity,” IEEE Transactions on Human-Machine
Systems, vol. 48, no. 5, pp. 509-525, Oct. 2018, doi: 10.1109/THMS
.2018.2791570 .

